
AFRL-HE-WP-TR-2004-0110 United States Air Force
Research Laboratory

Air Force Genomics, Proteomics,
Bioinformatics System

DataCap-Data Collection Module

Phase 1-Development

Christopher Geib

GEO-CENTERS, INC.
P.O. BOX 31009

DAYTON, OH 45437-0009

John M. Frazier
Robert S. Cook

HUMAN EFFECTIVENESS DIRECTORATE
BIOSCIENCES AND PROTECTION DIVISION

APPLIED TOXICOLOGY BRANCH
WRIGHT-PATTERSON AFB, OH 45433-7400

July 2004

Final Report for November 2003 - March 2004

Approved for public release; distribution unlimited

Human Effectiveness Directqrate
Biosciences and Protection Division

20050630 435 Applied Toxicology Branch

Wright-Patterson AFB, OH 45433-7400

NOTICES

When US Government drawings, specifications or other data are used for any purpose other than
a definitely related Government procurement operation, the Government thereby incurs no
responsibility nor any obligation whatsoever, and the fact that the Government may have
formulated, furnished, or in any way supplied the said drawings, specifications, or other data is
not to be regarded by implication or otherwise, as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission to manufacture, use, or sell any
patented invention that may in any way be related thereto.

Please -do not request copies of this report from the Air Force Research Laboratory. Additional
copies may be purchased from:

National Technical Information Service
5285 Port Royal Road

- Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical
Information Center should direct requests for copies of this report to:

Defense Technical Information Service
8725 John J. Kingman Rd., Ste 0944
Ft. Belvoir, Virginia 22060-6218

DISCLAIMER

This Technical Report is published as received and has not
been edited by the Technical Editing Staff of the Air Force Research Laboratory.

TECHNICAL REVIEW AND APPROVAL

AFRL-HE-WP-TR-2004-0110

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the
National Technical Information Service (NTIS). At NTIS, it will be available to the general
public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE DIRECTOR

//SIGNED//

MARK M. HOFFMAN
Deputy Chief, Biosciences and Protection Division
Air Force Research Laboratory

REPORT DOCUMENTATION PAGE Form Approved

I. OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number,
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

July 2004 Final Tech Report November 2003-March 2004

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

F33615-00-C-6060
Air Force Genomics, Proteomics, Bioinfonnatics System 5b. GRANT NUMBER
DataCap-Data Collection Module
Phase 1-Development

5c. PROGRAM ELEMENT NUMBER

62202F

6. AUTHOR(S) 5d. PROJECT NUMBER

1710
*Geib, Christopher, **Frazier, John M.;**Cook, Robert S. Se. TASK NUMBER

1710D

Sf. WORK UNIT NUMBER

1710D425

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
"*Geo-Centers, Inc. REPORT NUMBER

P.O. Box 31009
Dayton, OH 45437

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
**Air Force Research Laboratory AFRL/HEPB

Human Effectiveness Directorate
Biosciences and Protection Division 11. SPONSOR/MONITOR'S REPORT

Wright-Patterson AFB, OH 45433 NUMBER(S)

AFRL-HE-WP-TR-2004-0 110

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited..

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Cell biology studies involving genomics, proteomics and metabolomics technologies generate large quantities of data. Unfortunately,
today's research environment is encumbered by inefficient access to this vital data. Information searches are hampered by disparities on
both technical and conceptual levels between individual data sources. The current trend is for data sources to exist as a series of isolated
computational silos, providing a depth of data in a narrow field of research. The Acero Genomics Knowledge Platform (GKP) is an
enterprise solution that offers fully integrated data-representation across diverse scientific data types and sources. The DataCap data
collection module (a part of the Air Force Genomics, Proteomics, Bioinformatics System (AFGPB) application is one module of a series
of modules that operate on top of the Acero Platform. The purpose of the DataCap is to provide the individual researcher with the ability
to collect experimental data in a integrated format compatible with the Acero GKP. This technical report covers the architecture, the
design and the operation of the DataCap in its Phase I configuration.

15. SUBJECT TERMS

Genomics Proteomics Bioinformatics

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THIS PAGE ABSTRACT OF ., -

PAGES ,'Af, h e. ti

USSAR 19b. TELEPHONE NUMBER' (Include area code)Unclassified 36SA

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

THIS PAGE INTENTIONALLY LEFT BLANK.

ABSTRACT

Cell biology studies involving genomics, proteomics, and metabolomics technologies generate
large quantities of data. Unfortunately, today's research environment is encumbered by
inefficient access to this vital data. Information searches are hampered by disparities on both
technical and conceptual levels between individual data sources. The current trend is for data
sources to exist as a series of isolated computational silos, providing a depth of data in a narrow
field of research. The Acero Genomics Knowledge Platform (GKP) is an enterprise solution that
offers fully integrated data-representation across diverse scientific data types and sources. The
DataCap data collection module (a part of the Air Force Genomics, Proteomics, Bioinformatics
System (AFGPB)) application is one module of a series of modules that operate on top of the
Acero platform. The purpose of the DataCap is to provide the individual researcher with the
ability to collect experimental data in an integrated format compatible with the Acero GKP. This
technical report covers the architecture, the design and the operation of the DataCap in its Phase
I configuration.

iii

TABLE OF CONTENTS

Air Force Genomics, Proteomics, Bioinformatics System Phase I Development Effort i

NOTICE ... ii

ABSTRACT .. 1.... ii

LIST OF FIG URES AND TABLES ... v

PRE FACE ... vi

SUM M ARY ... 1

1.0 INTRO DU CTION .. 7

1.1 Purpose ... 7

1.2 Scope ... 7

2.0 METHODS, ASSUMPTIONS, AND PROCEDURES ... 8

2.1 Software and Equipment .. 8

2.2 Program m ing M ethodology ... 9

3.0 DISCUSSIO N 10

3.1 The Bioinformatics Data Problem ... 10

3.2 The Bioinformatics Data Solution ... 10

3.3 Selection of the Acero Genomics Knowledge Platform ... 11

3.4 AFGPB DataCap Primary Classes o ... 12

3.5 AFGPB DataCap GKP Model Extension 14

3.6 AFGPB DataCap M odule Program Flow ... 15

3.6.1 Activities Tab ... 19

3.6.2 Experim ents Tab ... 23

3.6.3 e-Lab Notebook Tab ... 29

4.0 CONCLUSIONS ... 34

5.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 35

iv

LIST OF FIGURES AND TABLES

Figure 1. Silos of Data 7

Figure 2. Acero n-Tiered Server Architecture 8

Figure 3. The AFGPB DataCap Module Primary Classes 12

Figure 4. Experiment as an Extension of the BOM 14

Figure 5. AFGPB DataCap Module Program Flow - Initial Start Up 16

Figure 6. The Acero DDK on Startup 17

Figure 7. AFGPB DataCap Module Initial Screen Display 18

Figure 8. AFGPB DataCap Module Main Panel Class Program Flow 19

Figure 9. AFGPB DataCap Module Activities Tab Display 20

Figure 10. AFGPB DataCap Module Project Panel Class Program Flow 21

Figure 11. AFGPB DataCap Module Experiments Tab Display 24

Figure 12. AFGPB DataCap Module Experiment Panel Class Program Flow 25

Figure 13. AFGPB DataCap Module Experiment Panel Class Program Flow 27
Continued

Figure 14. AFGPB DataCap Module e-Lab Notebook Tab Display 29

Figure 15a. AFGPB DataCap Module e-Lab Book Panel Class Program Flow 30

Figure 15b. AFGPB DataCap Module e-Lab Book Panel Class Program Flow 32
Continued

V

PREFACE

This non-peer-reviewed report describes the architecture, design, and operation of the DataCap
data collection module, the first of several application modules that are a part of the Air Force
Genomics, Proteomics, Bioinformatics System to be integrated with the Acero Genomics
Knowledge Platform. This report covers the Phase I effort that started November 2003, and
completed March 2004 under Department of the Air Force Contract number F33615-00-6060.
Dr. John Schlager served as the Contract Technical Monitor for the U.S. Air Force, Air Force
Research Laboratory, Cellular Dynamics and Engineering, AFRL/HEPB, and Dr. Darol Dodd
served as Program Manager for the ManTech/Geo-Centers Joint Venture. All work was
performed at Wright-Patterson AFB, OH, in the Applied Biotechnology Branch, Protection and
Bioscience Division, Human Effectiveness Directorate of the Air Force Research Laboratory.

Acknowledgement of Sponsorship

Effort sponsored in whole or in part by the Air Force Research Laboratory, USAF, under
Memorandum of Understanding/Partnership Intermediary Agreement No. FA8652-03-3-0005.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation thereon.

Disclaimer

The views and conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies and endorsements, either expressed or
implied, of the Air Force Research Laboratory.

vi

1.0 INTRODUCTION

1.1 Purpose

This report provides details concerning the background, design and operation of the Air Force
Genomics, Proteomics, and Bioinformatics System (AFGPB) DataCap data collection module
Phase I development effort.

1.2 Scope
The scientific studies of genomics and proteomics are highly complex endeavors, requiring the
acquisition of large quantities of diverse data. The sources of data accessed by the Applied
Biotechnology Branch include laboratory notebooks, computer driven instrumentation,
publication databases, as well as online peer reviewed articles. Each of these sources creates for
themselves, a "silo" of data. Data in each silo is stored differently, whether electronically or on
paper, and generally in a format that is uniquely designed for that given data source (Figure 1).
As such, it is these very silos that create conditions of incompatibility of data sources, which in
turn create barriers to access, and ultimately, obstacles to collaboration. All of these issues
compound the ability of researchers to conduct meaningful scientific research and arrive at
useful conclusions.

Sequence
Application

Exp~ression Pathways
Applicaton AppLcationGenetics °,,P* ••Proteornics

IAppApcacatio

'Ai

Seet Protwenics

Expression Pathways
Data Data

Sequence
Data

Figure 1. Silos of Data

To solve this problem, a means was required to capture data from all these different sources into
a single integrated "virtual" datastore. The solution was the selection of the Acero Genomics
Knowledge platform (GKP) as the way to integrate all of the disparate data sources. The Acero
framework provides both a broad standard for biological data, and a flexible and streamlined
approach to software development.

2.0 METHODS, ASSUMPTIONS, AND PROCEDURES

2.1 Software and Equipment
The Acero platform, upon which the Air Force Genomics, Proteomics, and Bioinformatics
System (AFGPB) is built, is itself built using advanced, model-driven application server
technology to create a modular, scalable, and fault-tolerant server with multi-tier architecture.
The server functionality is contained within the isDiscoveryCenter which in turn contains a
number of modular components (Figure 2):

k P DtslktopF ., D ,K Ar.rinti,,n- "
*D.... rsk.t,,i; C vel,:,:,el h it Corne.r,.li .,r,-F-part-.

,K .D K,::,nmer, Apps

i 4 Custo:m" DDK... n Ap:,s:c AIlAiatlions

Genomnics Knowledge Platform

*D!- :~~n p~s~I t i i'-

isDiscovery Center : :!i. .,,

D• tabasesI- Private R W

Figure 2. Acero n-Tiered Server Architecture

The GKP and the server module applications reside presently on one desktop PC (development
system) and on the HEPB Bioinformatics Data server (production system). The desktop PC is an
IBM clone using a Pentium 4 processor at 3GHz and having 512MB of random access memory.

2

The Bioinformatics Data server is a Dell 4600 server with two 2GHz Xeon processors and 2GB
of random access memory. In addition, the server has an attached RAID 5 array with a useable
storage capacity of 1.64 terabyte (TB). The Dell 4600 server is expandable to four Xeon
processors and 8GB of memory, and currently there are expansion slots and ports to add up to 4
more RAID 5 storage arrays.

The server core component, called the Secant Extreme Distributed Service Coordinator (DSC) is
a proprietary C++ based set of modules. The Genomics Knowledge Platform (GKP), as well as
all of the DDK custom applications (like DataCap) are Java language based. The DDK provides
a rich set of graphical user interface (GUI) tools and a common entrance point to the
isDiscoveryCenter Application Programming Interface (API).

The development tools that are being used to develop the DataCap and the other components of
the Laboratory Data Integration and Management System include the Rational Rose Uniform
Modeling Language (UML) application, the Oracle JDeveloper Java development application,
and the Acero Secant Object Data Language Compiler (ODLC). The Rational Rose UML
application is required to model extensions to the GKP schema. The UML is used in conjunction
with the ODLC which converts the UML output into SQL script for creating tables within the
database, as well as Java code files that create the object class representing the datastore to
include both Get and Set methods for data flow. The ODLC operates via an Acero provided
plugin to the Rational Rose application. JDeveloper provides the means to create GUI
applications employing the Java libraries as well as the Acero DDK libraries. The DataCap
module and all subsequent modules will be built using JDeveloper. JDeveloper was chosen
because it is a component of the Oracle Application Tools set that is site-licensed by the USAF
at Wright-Patterson AFB. The ODLC is an Acero provided tool that has the built-in logic to
correctly define the required fields in a new table, as well as generate the appropriate set of Java
methods for setting data into the new table and retrieving data from the new table.

The DataCap is a module that runs within the Acero Desktop Developers Kit (DDK) (Figure 2)
as a DDK custom application. DataCap is written in Java version 2, release 1.4.2. A complete set
of the source code files are provided in the Appendix.

Underlying all of the applications, APIs and tools is the Oracle database. The database employed
is the Oracle 9i Release 2 version and is installed on both the development PC as well as the
Bioinformatics Data server.

2.2 Programming Methodology

The programming methodology for DataCap is the use of Java as the programming language.
Java is accepted by the Department of Defense, has excellent security, and is highly portable to a
large array of platforms and operating systems. DataCap started out as an application called
GPB, developed by Procter & Gamble. The GPB application was intended as a corporate "do-
all" application and fell short of the needs of researchers at AFRL. Additionally, much of the
application was Java Beans based and it was desired to have an application that was more client-
server oriented. As such, DataCap captured a number of positive features, e.g., the file system
provisions built into GPB, but converted the Java code to operate on a client-server basis. The
DataCap code was further modified to add data collection aspects such as the e-Lab notebook

3

feature. Additionally, the original GPB did not capture a number of unique features found in the
AFRL biotechnology laboratories. These features required extension of the Biological Object
Model of the GKP by creating a new table and Java class called Experiment. The successful
implementation of the Experiment table and Java class into the DataCap Phase I effort opens the
way to easily extend the model further during DataCap Phase II development. In the following
Discussion section, details of the architecture and design of the DataCap module will be
described.

3.0 DISCUSSION

3.1 The Bioinformatics Data Problem
Within the Applied Biotechnology Branch of the Human Effectiveness Directorate, there exists a
problem that is common throughout the biotechnology research industry, that being the
incompatibility and disparate sources of biological data. This problem creates a situation wherein
there are barriers to access data, and consequently, obstacles to collaboration. Examples of the
disparities of data include such things as individual lab notebooks, computer-aided
instrumentation with their own unique ways of storing and managing data results, and literature
searches that result in paper as well as electronic file type documents. None of this data can or is
stored together in any ready to use or analyze way. Because much of it is stored offline in
various locations, attempts at collaborating in near real time within the lab or with external
partners is impossible. In addition to the incompatibilities and the disparate locations for data,
bioinformatics data takes up ever increasing storage space. Clearly, a need exists to bring all of
this data together in such away as to make it readily available not only internally, but available to
the various collaborators and partners involved in research for the Applied Biotechnology
Branch.

3.2 The Bioinformatics Data Solution
The solution is to build an integrated data collection, storage and management system whereby
all research data, regardless of source, is located in one central repository. To accomplish this
requires not just a network user friendly interface, but a means to automatically capture as much
of the data as possible, parse it to a specific, reliable, and approved format, and store it in the
context of research activity and experiment. User interfaces must exist to enter manually
acquired data such as that found in laboratory notebooks. In addition to the user interface and the
tools to acquire the remote data, a robust, secure, and reliable database engine or engines are
required.

The original design strategy was to create a system design that involved five distinct steps. These
steps were:

"* Design and create a complete data model based on the science being performed
within the Applied Biotechnology branch. The approved data model would
become the relational database schema.

"* Create or acquire an Application Programming Interface (API) to provide the
platform for the user interfaces and various programs that were to be developed

4

for the integrated solution.

" Develop a Data Collection module that would capture data from all the disparate
sources such as laboratory notebooks, computer driven lab instrumentation (e.g.,
spectrophotometers and chromatographs), and literature sources. The Data
Collection module must meet the needs of the individual researcher by addressing
individual activities and experiments associated with these activities.

"* Develop a Data Manipulation module that performs queries on the collected data,
is capable of doing data mining, and creates data arrays for submission to external
data processing applications such as MatLab, SAS, or modeling software on
supercomputing assets.

" Create a Data Management module that provides overall integrated management
and control for all bioinformatics research within the Applied Biotechnology
branch. The Data Management module is designed to serve the multiple layers of
the research organization.

3.3 Selection of the A cero Genomics Knowledge Platform

Initial research and literature search in July 2003 for possible Commercial-Off-The-Shelf
(COTS) solutions for an integrated bioinformatics management solution led to the discovery of
the Acero Genomics Knowledge Platform (GKP). This platform was in its early stages of use
within the Genomics Research Infrastructure Partnership (GRIP), a partnership including the
Genomics Research Institute of the University of Cincinnati, Children's Hospital, Wright State
University, Procter & Gamble, and Acero. After some additional research, it was decided that the
Applied Biotechnology Branch would likewise employ the Acero platform.

One primary benefit to employing the Acero GKP was the need to design and create the data
model and relational database schema had already been accomplished. The Acero platform
utilizes an underlining in-silico definition of biological processes through the Biological Object
Model (BOM). The BOM describes traditional sequence analysis, large-scale expression
analysis, biological sample description, molecular pathways, polymorphism data, and several
other related areas of life science research. Additionally, the Acero BOM is readily extendable,
thus allowing for the creation of a unique design that is consistent with the environment found
within the local laboratory environment.

Another benefit of the Acero platform is the application programming interface was already
created and validated. The API enables an application developer to write generic applications
using the Java programming language that do not rely on a single source of data and at the same
time make the integrated data available to a broad range of COTS data analysis tools. The Acero
platform includes the Desktop Developers Kit (DDK), which is a user interface to the underlying
model and API.

As a result of selecting the Acero platform, five distinct development steps were reduced to
three. The Data Collection module, the Data Manipulation module and the Data Management

5

module are the three development activities required. The balance of this report addresses the
first Phase of the Data Collection module, also called DataCap.

3.4 AFGPB DataCap Primary Classes
The DataCap Phase I application software design is based in part on the original work done by
Procter & Gamble in their GPB application for the GRIP. However, as previously stated,
DataCap takes a number of supporting Java classes out of the Java Beans category and moves
them into the client-server context. At present there are a total of 29 Java files (or Java classes)
associated with DataCap. The primary classes which drive the application are shown in Figure 3.

AFGPB Primary Classes

Afgpb. ,lass
(r'lai- envry tn' app)

r 'y [ProjectPa r,-.Lacss

irrl]pler.wlnt&r
lPha~s• I)

Explimnen'Panei.class

coLebBookPanel.class j
. . .-. .:T .-: :.' :T :- .

*iii
I I: :: :: :: :: ::.. . . .: :: :: :

('P hase~~~~~~ ~~~~ .[.: ." .. .: .: .. .- '. .. • .",.- .

(Phase N,)

Figure 3. The AFGPB DataCap Module Primary Classes

6

As can be seen, the main entry into the program is via the Afgpb.class (the compiled Java name).
Within Afgpb.class, a basic multi-tabbed Pane is created. This pane uses the DDKJTabbedPane
which is one of the numerous GUI tools built into the DDK and is directly derived from the Java
JTabbedPane class. The Afgpb.class also instantiates a Java Data Objects (JDO) Persistence
Manager, as well as a JDO Transaction Manager. Both of these objects are used throughout the
various object classes in the application to connect and transfer data via the API to the datastore
(database). The DDKJTabbedPane hosts each of the panels attached to each tabbed pane. Within
Afgpb.class is a switch-case method that triggers the appropriate panel and class object for a
specific feature.

In Figure 3, the primary classes are shown as well as the future implementation classes.
Afgpb.class, MainPanel.class, ProjectPanel.class, ExperimentPanel.class, and
eLabBookPanel.class comprise the main Phase I Java classes, while SpectrophotPanel.class,
ElectrophotPanel.class, and ChromatoPanel.class will be implemented in Phase II. The functions
of the primary Phase I classes are as follows:

" MainPanel.class - Provides the presentation of the equivalent of a "home" screen with an
imbedded image and a button. The button, an instance of a utility class called
SupportButton, starts Adobe Acrobat Reader on the client machine and opens a file that
is the current support manual and is located on the server.

" ProjectPanel.class - Displayed as the Activities tab to the user, the ProjectPanel class
presents the means to create new research Activities with a description, a Work Unit
number, an activity leader and authorized activity members. The Activities Save button
fires Java methods that create a folder in the GKP File System (GKPFS).

" ExperimentPanel.class - The ExperimentPanel class presents the user interface to create
and edit Experiments associated with a given Activity. One of the main features of this
class is its interface with the extended Experiment.class and the Experiment table within
the Oracle database. As Experiments are created, an entry is made through
Experiment.class Set methods to add or update data to fields. Additionally, the
ExperimentPanel class further interfaces with the GKPFS to create additional subfolders
and sub-subfolders under the appropriate Activity. The ExperimentPanel class represents
a significant modification to the original GPB application.

" eLabBookPanel.class - This class is a complete departure from the original GPB
developed by P&G Pharmaceuticals. This source of important research data is integrated
into the DataCap, and provides the portal to create a text-only entry as found in a typical
lab notebook. Due to current limitations in Java, the ability to paste a graphical image is
not available. The underlying data structure being used is based on a VARCHAR2 field
in the Annotation table. Additional methods provide the means to display the contents of
all lab notebooks specific to the displayed activity in an integrated fashion. A method is
provided to save the contents of an integrated lab notebook as a Microsoft Word
document.

7

3.5 AFGPB Data Cap GKP Model Extension
In the design of the Biological Object Model (BOM) within the GKP, most of the science related
classes inherit from class Publishable. The BOM is designed to be extensible through additions
of classes that are children of the Publishable class. The existing BOM does not adequately cover
the concept of an experiment as understood within the Applied Biotechnology Branch. For this
reason, the BOM has been extended. Figure 4 details this extension.

<<native>>
Auditable

(from common)
*><<key>> OlD: ObjectKey
kname : string<255>

<<native>> i~•description: string<4000>
ne>secContainerOD : unsigned long

Publishable i>audtCreator: unsigned long
(from com=4r it auditModifier : unsigned long

,*ID string<30> _A7 ýk>auditDeletedBy : unsigned long
,*version : string<16> i>auditDateCreated : Timestamp

upperCaselD: stri ng<30> •,audiDateModified: Timestarnp@tupeString: string<128> ý*auditlDeletionDate: Timestamp

'*qualityScore: float
@isProvisional: boolean
kisModified: boolean
kisArchived: boolean
@>checksum: long long

Experiment
kparent Project: string<80>
kexperirmentLeader : string<128>
kextemalExplD : string<80>
kexperimentDate: Date
(>expDataType: string<128>
Z>systemType : string<128>
'ktissueSource : string<128>
@>culture conditions : string<128>
@>protocol: string<80>

Figure 4. Experiment as an Extension of the BOM

To extend the model requires the use of the Rational Rose Uniform Modeling Language tool,
along with the Acero Secant Rose plug-in. To properly extend the Acero model, any class object
must be a child of Publishable, which in turn is a child of Auditable. Additionally, the translation
algorithm in the ServerBean.class calls methods that are a part of the Hit class as well. This
requires the addition of a number of rows that are not shown in the above graphic. Although

8

required by the system, they are not germane to data collection and manipulation. For a complete
listing of the fields in the Experiment table, see the listing in the Appendix. The model diagram
above details the classes within the BOM. As such, there are tables that correspond to the classes
within the GKP except virtual classes. Virtual classes do not have corresponding tables. The
Acero plug-in when run in Rational Rose generates a number of files. These files include Java
class files ready for compiling, a Metadata Object File, or MOF file, and a schema file. The Java
files are compiled along with all the other class files in the DataCap implementation. The MOF
when read in by the GKP, is used to register the extended class and defines the class to the
system. Under the current build of the GKP, two Java files are created and later registered to the
GKP. One defines the extended object in Java Data Object (JDO) format, and the other defines
the extended object as a Java Bean Object (JBO). The schema file is in a ready format to be run
on the Secant schema generator application that converts the schema file to a SQL file and then
executes PL*SQL to run the script to create a table within the database. Within DataCap, the
Experiment object represents an actual table within the Oracle database.

3.6 AFGPB DataCap Module Program Flow

The next paragraphs will discuss in detail, using both figures and text, the overall flow and logic
of the DataCap. Figure 5 details the initial startup of DataCap.

9

AFGPB Program Flow - Initial Start Up

,,ArG. GP - Y 0. Laurz;h AFGPB with Java

. v,,it st: i,• s.ktoep ic*br'

ND

CoPrstrc' calls rnw DDKJTebbc, -dPanebd:
S~c,-.tc~s

.blrto:

- c'o~-te~s " ' .

Adds Tabs to ,7rc -.'iPane

ddChangorLislrtnew CngLister()X

1 CorstrJctcor thor cals

:abs sta:eCharped(ChcrqŽEve1rt ej

fcsrlr.I~~ Yes r'.wMi1a1fhisApplication;: A
rPtC7,P 11l.p I I

No

i~~~~~i"-...~~~~......
fo u s Y e L- P roio • P a nie !.:(h ls A p p hisa tio n l,; 1

No

•isrriPiprIP meI'• " N -

{•focus? •" Esp~r~on~l• Isnle (iiApplkaliun):;*

No,

. focu-s? i-s•..(vi sApplk atlon);

Figure 5. AFGPB DataCap Module Program Flow - Initial Start Up

10

Figure 5 assumes that the user computer has had the latest Java Web Start (version 1.4.2)
installed, and that there is a GKP icon on the user computer Desktop. Additionally, it is assumed
that the user has an account and a password on the GKP system. When the user first double
clicks the GKP application icon on the desktop, an indirect application launches Java Web Start.
Java Web Start in turn loads and starts the Java Jar executable archive file that creates the DDK
on the desktop. The DDK is the foundation application in which all GKP applications are run.
The DDK appears on the desktop as in Figure 6.

p flo View EdA Window Help

V. Projects

A - Archives
Resources

-. , • •I•.,•:Applications •

• r---•-K•CVapp~uild V 1.0
,0 Oeneral Search

-. Model Viewer

Object Browser

.';- . Ontology Cateaorizer

SOntology Categorizer (Jl

1;-), Ontology Explorer

Preference Editor

* Taxonomy Viewier

. -- Tools

User Management

+- DataSets• +" "I' ExeeSenrices I

r ToolDBs

+-. Tools
+ wrappers

jJSecurity
4-)Temp

+r-- J User

Figure 6. The Acero DDK on Startup

Note in the left hand panel labeled Projects in Figure 6, is a hierarchical tree with the Resources
Applications area expanded. The first icon listed is AFGPB. When this icon is double clicked,
the DDK loads and executes the file afgpb.jar. In addition to configuration files and resource
files, the afgpb.class is loaded and executed. As afgpb is constructed, it creates in memory a
Persistence Manager, which is required for communications and data flow between the Java
application and the datastore which is an Oracle 9i database. The constructor also calls the
jblnito Java method which is created in code when using the Oracle JDeveloper tool for
creating GUI Java applications. Within this Java method are all the necessary calls to create a
GUI window and then create and place all the controls and text within the GUI window such as
buttons, combo boxes, labels, text entry fields, etc. Additionally, the jblnit0 method instantiates

11

several Java listeners, most notably the tabstateChanged listener. When the constructor and its
methods finish running, Figure 7 details what is visible to the user.

File View Edit W•ndow Help

ProjectsK system Home Activities Experiments e-Leb Notebook Spectrophotometer Electrophoresis Chromatography', + 1- Archives

S Resources r AFGPB S.pp.ort

7 . Applcations

10

CVappBuild V 11.0

Model Vi ear Air Force o.-... Z' Obj ect grower: -•;

O ntology Categorizer

Ontology Categooizer (JI
-- Ontology Explorer

r~Preference Editor

11 TaxonomnyViewer

//~
: "3 Too ls

+ C4=-I S .ensertices

Temp Os. +-1Userj3

Figure 7. AFGPB DataCap Module Initial Screen Display

Looking at Figure 7, note the tabs along the top of the DataCap module. These tabs constitute hot
spots for the tabsstateChange listener. When a user clicks one of the tabs, the listener in turn
fires a method that instantiates a new class. Looking back at Figure 5, the jbInitO method calls
the MainPanel class by instantiating a new MainPanel object. Of the seven tabs currently
displaying in AFGPB, only the first four: Home, Activities, Experiments, and eLab Notebook,
when selected, call a subsequent Java object.

The program flow for the MainPanel class is detailed in Figure 8. The instantiation of a new
instance of a MainPanel object starts the MainPanel.class. As with all Oracle JDeveloper built
applications, MainPanel.class contains a jbInit0 method call in the constructor of the class. In the
MainPanel class, the method sets down a JPanel interface, creates and places a new
SupportButton, and calls and places getlmagelcono that puts the graphic on the screen.

12

AFGPB Program Flow - Main Panel

A instan:tcs MarPr.c

COn'Itruc.c cal's new Suppc't~uttor):

Figure 8. AFGPB DataCap Module Main Panel Class Program Flow

3.6.1 Activities Tab

When a user places the mouse cursor over the Activities tab and clicks the mouse, the
ProjectPanelTab is brought into focus and the listener starts a new instance of the
ProjectPanel class. The terminology of calling this portion of the flow a Project is
carryover from the P&G version which referred to Activities (as found in the Applied
Biotechnology Branch) as Projects. The user interface as found in Figure 9 presents itself
visibly as Activities.

13

Eile View Edit Wndow Help

Projects . iC-.-

, Ss'tem Home Activities Experiments e-Leb Notebook Spectrophotometer Electrophoresis Chromatogreaphy

+ C3 Archives

- Resources
- , Appticotioris kAotibitieS: Integrated Biointormntics DEate Collect. & Manip.

_ CVappBuild V 10 Create NewActivity Edit Acofit

GenerAl Sear~h
-vý Model \Iieoaer

V Dnobjepcategiouer Activity Namne: Irite-gratect Sioinforroetics Data Collect. & Manrip.Ontology C::t eg orizet

' nto ogy C ategorrzer(JI Description: This is the activity to maintain all docusmentation efforts related

11)Onooy xloe o Acero cools development. lilithin chlsr activity• vrll be all [,

" [.niirand the Data Hanagement Application.

4,- oolsk Acivit Leaer:geibcw

+ User Management W edork Unit#: VilCIý.
Datasetsf

-

EsoLruce Users not in Activity Activity M emnb ers:

• t• Te ol D~c ,-......

t:+••Tents : DSCAdmlnichtiatr Gt<Plkdmin

[-÷•Wrappers st aplear :chanvt

[" + 1•Ternp
t•razlejrm

[.9evibees

'- Cs< E)
er sbvo'

4 Userigerm

lsotoai

Figure 9. AFGPB DataCap Module Activities Tab Display

The program flow for the ProjectPanel class (displayed as the Activities Tab), is detailed

in Figure 10.

14

AFGPB Program Flow - Project Panel

B -- Protats- orlctPareA cU¢ss

O ftf C'."€al G

cgetAI GKP Is r 3')

erxt

rev;' 5ew~c0.yU,,r.

r~t, Fields.
bIr U) Crate. Butteors

pnIinn cI orrn.Rhxe.R

Ir~s*,rtiates viese

I '~ -bo't. ,,Proj'ctBJu: .onr .c:i~iPa'orni ed el. •.--al•• =ooccsNeo.\,ri-cS: e od) - -d2t - -.• _#CJrntoons R ,E M DEOI'P "O~e) callseda •

[ed:icProioct Ln actorPerowed:o}: ts:s essGr: Proj ctt: s-..c•- r -- P se'Currcr t!This.EDIT Z iODEt I

False,

Dasplay Er'or M_-,sac2(o

st 3,Js :or aPct er'orn'e,--,: F bJil re,; Arraylistluse sList ; F cndt.c,. d r2iert(userN-T , I

reTrveUserBJ.onr. ca inPefor-,.'.de) 2iilc rev, ,A.'rayU.i:2prcdtr'. em .'._,st:; F c .. 2cElcerlr(-serName) I
,hen

s'ei-,aci 2crPofrrGrmcdVe: cs--.o_-srjeiý'r,.Iodo EDIT MO'c?-T'L'e CaiPic:cpruerncO

raise

Retur -False CREATE I9D)-.-Tr-- Cell ProctHeŽperceeteProect0

u..ra'oieondL. al pro .;cssP-oie-tSelocod() cills IcadlProlec:e,

Figure 10. AFGPB DataCap Module Project Panel Class Program Flow

15

When the tabsstateChanged listener in afgpb.class detects that a user has selected the
Activities tab, the listener creates a call to a new instance of ProjectPanel. The
ProjectPanel class first creates and then fills a Java collection by a call to
getAllGKPUserso. It then follows up by creating a new instance of a
secant.security. User() object and assigning the result to a variable that is used within the
class. Provided these actions are successful and do not throw any exceptions, the
constructor then goes on to call the jbInito method for the class. The jbInit method goes
about creating a JPanel instance and then populates the panel with fields, buttons, combo
boxes and instances of combo box listeners. These listener objects are created to detect
changes in certain combo boxes and refresh other combo boxes and fields when a value
changes. There are six buttons in the ProjectPanel class and the jbInit method creates a
listener for each.

When the createNewProjectButton listener object detects that a mouse click was
performed on the button, the listener calls the processNewProjectSelectedo method. The
processNewProjectSelected method in turn calls clearProjectData0 which goes about
clearing all the fields and combo boxes other than projectComboBox. The method re-
calls the getAllGKPUsers method and repopulates the usersList DDKJList area. The
clearProjectData method then returns a void to processNewProjectSelected, where the
method calls setCurrentMode, passing the static integer constant CREATEMODE. This
causes all the fields that are editable to go from a grayed-out, non-editable state, to a fully
editable state. In this state, the user (if authorized) can enter information about a new
Activity to include the Activity name, a description up to 4000 characters, define the
Activity work group leader, the AFRL Work Unit this activity bills to, and add a list of
users to the authorized list of users for this activity.

The editProjectButton listener object detects that a mouse click has occurred on the Edit
Activity button. This listener calls the isUserInProject method which attempts to
determine if the logged in user that clicked the Edit Activity button is a member of the
displayed activity. If the user is not a member of the displayed activity, then an error
message is displayed to the user, and upon acknowledging the message, is returned to the
Activity panel with no state changes. However, if the user is a member of the activity,
then the listener changes the state of the panel by a call to setCurrentMode passing in the
static integer constant EDITMODE. The state change allows the user to make changes
to the Activity Name, Description, Work Unit number, and make changes to the
membership of the Activity.

The addUserButton listener is linked to the button with the right facing arrow between
the lists of user names. When this button is clicked by the mouse, the listener performs
the following actions. It first makes a call to the ArrayList method and generates an array
of selected (one or many) users from the usersList list box. Once this array is built, the
listener then loops through the array and adds the individual user names via an
addElement call to the projectMembersList list box.

The removeUserButton listener is linked to the button with the left facing arrow between
the lists of user names. When this button is clicked by the mouse, the listener first makes

16

a call to the ArrayList method and generates an array of user names. The listener then
processes the array via a loop and does a removeElement call as appropriate.

When the Save button is clicked by the mouse, the saveButton listener is called. The
listener first tests to determine if the setCurrentMode constant is set to EDITMODE, and
if true, the listener makes a call to the ProjectHelper.updateProject method. The
ProjectHelper.updateProject method first does a check to determine if the root project
directory exists in the DDK Workbench, and then updates the properties for the activity
leader, activity organization, and activity description. On the other hand, if the
setCurrentMode constant is not in EDITMODE, then the listener tests through an else if
statement whether the setCurrentMode constant is set to CREATE MODE. If the test
results in a Boolean true, then the listener calls the ProjectHelper.createProject method.
The ProjectHelper.createProject method, just like the upadateProject method, first
determines if the root project directory exists in the DDK Workbench. The method then
sets properties for the activity leader, organization, and description. If these method calls
are all successful, then the listener adds the appropriate elements to the display, updates
the Workbench screen so the new Activity folder appears, posts a dialog box notifying
the user of success, and performs cleanup to ensure proper presentation of information to
the user.

A mouse click on the Revert Changes button calls the revertChangesButton listener. The
listener executes a call to the processProjectSelected method, which in turn calls the
loadProjectData method. The loadProjectData method grabs the contents of the
projectComboBox into a variable, and then sets the project name text field, description
text area, the project leader combo box, and organization text field through a series of
setText or setSelectedltem methods with appropriate getter methods passed in as
arguments. The method then removes all the elements in the usersList list box as well as
the projectMembersList list box. At this point, the method then proceeds to re-populate
these list boxes with the information for the selected project.

3.6.2 Experiments Tab

Figure 11 below shows what the user sees when the Experiments tab is selected with the
mouse.

17

* ile Viewv tdi Wncdpw Help

Projects

S tet • chHomte Actvikes Expertneen, e-LLab tebook Se•ctrorhatometer Electrophoresta Chro°ptoaorahy

- , Rohi-e, AntivC s: Integrnted Biointormatics Data Collect. 8 M thp

-!i pho ztioH Eieiirients. AFGPS

-Create Nets E•,primelre) Ei iptnent

* CVaPp9.,ldt I
Senera AFGPS

* ' Model V,,,,e
Biotto £ Deetl~li~eAFGPFE etatords fer Air Force GenoeajoO. Proc-~ic., ant

Obntdlg 91 Dflt Bieinforeratics. AFGPt' is a Java based aclicattionn
-,)Ontlogyt Cat piittLediebw

Ontology Eli

"Prener- E Etoia Expetrlet ID iAFGPSA

- D l e I. Etpennient Itate (eyew,"-mm-dd Form atl) a2004-44-12

- Tos -N TL-ae Souroe NIA"•"1t Woappr &peiment DIl Type Kinetics

T"• ~amp ClN-l Condlition• Stlt=•/dOttI U er ,

U- Potot

None

Say* Changes

Figure 11. AFGPB DataCap Module Experiments Tab Display

The Experiments tab supports the unique requirements of the Applied Biotechnology
Branch to capture experimental data within the Acero GKP. It represents a significant
departure from the original P&G GPB application and necessitates an extension of the
BOM. The program flow of the Experiments tab is found in Figure 12.

18

AFGPS Program Flow - Experiment Panel

C rstartia~eo - EŽc-'ionn•Parr_ cla~ss

c2.nstrucc calls ir c'cer

} Butt:•'S.
j~lnt'r) t-- creaF"' -. 1• Combos~oxes,

I i r":Cori*br)Knx fisienerS

firall',.

! sa Expo~r~mn'cr, xporirnor~t) I

tci;t

FalseI cprer~nirt n-jIl? - I clecc~serimertDatnC

setCurren.Mode(VIEW MIODE:

r!

.R rjr ;"Oise.. -

divPeojocutt",i actorPerfrmn'L,-e.) Tests .. . -' L

C. 1

Figure 12. AFGPB DataCap Module Experiment Panel Class Program Flow

-19

When the tabsstateChanged listener in afgpb.class detects that a user has selected the
Experiments tab, the listener initiates a call to a new instance of ExperimentPanel.class.
As there are a number of methods that are making Java Data Object (JDO) calls to the
database via JDO methods, the constructor has been configured to create a Persistence
Manager object via a call to the getGKPPersistenceManager method, and then create a
Transaction object via a call from the Persistence Manager object to Transaction
Manager. These objects are used extensively to add, update, or remove information from
the Oracle database. The constructor then calls the jbInit method to establish the GUI
interface with fields, buttons, combo boxes, lists, and combo box listeners. The method
while laying out the GUI objects on the screen, also gets information like the list of
Activities (Projects). It then populates the ProjectComboBox list, as well as getting the
list of Experiments, for the first Activity that displays by default, and populating the
experimentComboBox. The jbInit method then instantiates a series of action listeners for
buttons. It also instantiates listeners for the Project (Activity) combo box and the
Experiment combo box. Finally, the jbInit method makes a call to loadExperiment,
passing in the currently selected (default display) experiment. If the variable is null (no
experiment exists), the method calls the clearExperimentData method which clears all the
data entry fields and then runs the setCurrentMode method passing in the constant
VIEW MODE. If however, the experiment is not null (the most common case), then the
method goes about gathering the name, description, the contact and populating the
appropriate fields. A call is made to loadExperimentOther method and a JDO query is
sent via the Transaction Manager to recover experiment date, cell type, source,
experiment data type, culture conditions and protocol, and populating the appropriate
fields. This data is stored in the new extended table called Experiment. Upon return of the
loadExperimentOther method, the setCurrentMode method is called with the constant
VIEWMODE, being passed.

When the user clicks the Create New Experiment button in the DDK, the
createNewProjectButton listener is activated. The listener in turn calls the
memberOfSelectedProject method and tests to see if the user is a member of the currently
selected activity. If the user is a member, the method returns a Boolean true to the listener
and then the listener calls the setCurrentMode method and passes in the constant
CREATE MODE. If the member is not a member of the current activity, the
memberOfSelectedProject method displays a dialog stating the user is not a member and
then upon acknowledgement, returns a Boolean false to the listener which then exits
without changing the setting of setCurrentMode.

Clicking the Edit Experiment button in the DDK triggers the editProjectButton listener.
The method called by the listener is functionally identical to the methods called by the
createNewProjectButton listener. However, the only difference between the methods is
that in the Edit instance the setCurrentMode method is passed the EDITMODE
constant. In Edit mode, text from the selected experiment goes from being grayed out to
active and editable. The setCurrentMode method when EDITMODE is passed in, does
not call the clearExperimentData method.

20

AFGPB Program Flow - Experiment Panel

C.1

FFMO DF-n:H~p~r crr4.irP(hprked;

_eL creaLeDefa2LtSJbfoIders()i

I
insertExpcrimertTable,ý 7

,.... .0. - p " --- uc. S 1c Jr

---.. EDIT MODE - T rL 1 Expei rwrllelp."pAt-,Eper!MHr~t:)

.ranrsapction beJi

Figure 13. AFGPB DataCap Module Experiment Panel Class Program Flow Continued

The Save Changes button on the Experiments DDK page activates the saveButton
listener. The program flow is as shown above in Figure 13. The listener method conducts
tests to determine if the current mode of the application is in CREATEMODE, and if
false, then it tests to see if in EDITMODE. If the mode is CREATEMODE, then the
method makes a call to the ExperimentHelper class and its createExperiment method.
This method sets up properties and then creates the container within the Workbench.
Upon return of the method, the listener method determines if the create default subfolders
checkbox is checked. If true, the listener calls the ExperimentHelper class method
createDefaultSubfolders. This method then creates the containers (folders) listed below

21

the named Experiment container in the Workbench. This then moves on to call the
insertExperimentTable method. If the checkbox is not set, then the method calls the
insertExperimentTable method. The insertExperimentTable method takes the entries in
the various combo boxes and list boxes and via the persistence manager and transaction
manager, passes data via the JDO Experiment class which in turn takes the data and loads
it into the Experiment table in the Oracle database. Upon return from the
insertExperimentTable method, the listener performs a number of cleanup methods to
refresh the view of the Workbench with any changes, and then calls setCurrentMode
passing in the constant VIEWMODE. The listener then exits at this point.

When the listener tests for the current mode, and the test for CREATE MODE returns
false, then the listener tests for EDITMODE. If this test also returns false, the listener
method then simply goes through the process of cleanup and refreshes the appearance of
the Workbench as in CREATE MODE case. However, if the test for EDIT MODE
returns true, the listener method then calls the ExperimentHelper class method,
updateExperiment. This method updates properties much the same as the
createExperiment method, however, this method does not create new subfolders. Once
the updateExperiment method returns, the listener then starts a transaction, and makes
updates to the Experiment table via calls to the JDO based Experiment class. When the
calls are complete, the transaction is committed (or rolled back if errors), and the listener
method then performs clean up and refreshes the view of the DDK Workbench. The
listener methods final act is to set the current mode to VIEWMODE.

22

L' Fle View Edit "Wrdow•, Help.

Projects

S$:7chver Home Act"itie, Expoerients e-LebtIEeoocl! Spectrophotometer Electlrophoresis Chrorrmetoraphy

R- tesource, Integrated Doriormatics Data Collert. & Manip.

- - Appl..atio.. E r...e.. AFGPS

45 1 -T E-eamrecte, Oeegeibcw

CiI-PleCeld Ect'ItI 20031217-I Edit Entries V ree t -ree ~ mePe

N rA Mdel Vw-e[,.AObject B-r 1s.•ve created the first aDO ba•ed file on tEperiment table-

- Ontology Cat
V,)3 Ontology Cat ,The ko7 to creating a JDO out•put from the Ido emitter is to use the follow-ing syntax:

4 Onltooq, Ep -]edo -j -1 -S -p/ORP. Is•ocoveryCentrer. common. /GRP. ISDzeovueryCenter. api. common. /

-i-eA Preference E
Taonro-vi (The jdo emitter creates a client-side java file ehereas the the jbo emitter creates a server-side jave file.

soots The -nms p (-pW aroument is the packsate argument and is required for the jdo emitter.

Use, Mara-ge
-• SataSeb • OTE: A possible PP, ?.P." KEY generator could be:

r 4. Ceeseeciee s public void crea)t•D(bijID id)+ Tools , SP DTeslt " id. aosionteglnher.c Longl(Syoteo. currentTemeF~l~ems l))t);

4-• Wrappero f ie!-• =lSeeuribr • oterrle. te ae l

• ÷• Temp [" Adding thing to the dotastore re'rire c using the method maePercisoent()

Deleting items from the dtaratore reqteires using the method dele-tePerosisencet)

Figure 14. AFGPB DataCap Module e-Lab Notebook Tab Display

3.6.3 e-Lab Notebook Tab

Figure 14 shows the appearance of the e-Lab Notebook tab. The original Procter &
Gamble GPB application does not have anyway to capture laboratory notebook data, thus
the e-Lab Notebook tab was created. The e-Lab Notebook provides a means for
researchers to capture the text notes and comments that are normally written in an
individual paper lab notebook. In the Phase II effort, a linkage will be made to graphics
stored in the containers within the Workbench. For each notebook entry, the text area for
typing notes is limited to 4000 characters. This is because the contents of the text area are
captured and stored in an Annotation table entry. The e-Lab Notebook offers additional
features, e.g., being able to review all entries from all notebooks with respect to a given
experiment. Additionally, all entries for a given experiment can be saved off line as a MS
Word file for review and development of reports and papers.

By selecting the e-Lab Notebook tab in the DDK, the user activates the instantiation of
the eLabBookPanel class, and the program flow as outlined in Figure 15. As in the
ExperimentPanel class previously discussed, the eLabBookPanel class constructor creates
a PersistenceManager object, as well as a currentTransaction object. The constructor then

23

calls the jblnit method which builds the GUI screen within the DDK. The jbInit method
creates and places fields, buttons, Combo Boxes, lists and a number of listeners. Three
listeners detect changes made in the selected item in the three combo boxes, while the
rest are to detect the action of button clicks to the various buttons located on the tab page.
Once the GUI portion has been established by the jbInit method, the method calls the
loadExperiment method. The loadExperiment method tests to see if no experiment is
chosen (null) and if true, then runs the clearExperimentData method to ensure all fields
are blank, and then upon return, the method calls setCurrentMode, passing in the
VIEWMODE constant. If however the test to see if experiment is null (that is there is an
experiment selected), the method gets the primary activity contact name, then loads the
experimentLeaderComboBox with the list of approved persons for that experiment, and
then calls getExperimentID which loads a global variable with the OID for the given
experiment as stored within the Experiment table in the database. Once these events have
completed, the loadExperiment method calls setCurrentMode, passing in the
VIEWMODE constant.

When the user clicks the Create New Entry button, the createNewProjectButton listener
is activated. The listener method first determines whether the user is a member of the
currently selected activity through a call to the memberOfSelectedProject method. If the
user is not a member, the method displays an error message stating the user is not a
member and returns a Boolean false to the listener method test. The listener method upon
getting a false simply returns. On the other hand, if the user is a member of the currently
selected activity, then the memberOfSelectedProject method returns a Boolean true and
passes on to the next test, which is to determine if the user is an Admin user. The Boolean
state is determined in the first steps of the listener method by a call to the GKP security
system to determine if the user is an admin. If the user is not an admin, the listener
method then tests to see if the user listed and the user making the request are the same. If
they are not, then the listener method generates an error message and then returns. If the
listed user is the same as the requesting user, then the method does a setCurrentMode
passing in the CREATEMODE constant. Likewise, if the user is an admin user, the
listener method does a setCurrentMode and passes the CREATEMODE constant.

The editProjectButton listener method is linked to the Edit Entries button. When clicked,
the listener method performs the exact same sequence of calls to the same methods as the
createNewProjectButton listener method. However, instead of passing the
CREATEMODE constant to the setCurrentMode method, this listener passes the
EDITMODE constant instead.

24

AFGPB Program Flow - eLabNotebook Panel

D rPstortiatreo 1011Pa B:NP rc.I c,:s I, !

i

C,ý'Istrucc,,, cal s i-i ofc~ r

I mi--:tGlKPPorsiste ,ccq..1. agerO

ci rcaJrrentTransactiont I

I' cm :-te ! Fie rNllib ni' ,- Ccmbo~oxes.

nil:;;o r z Iinrin-
S! iaiv G -rnh ,hx lijstenrF,

fIna-'IV

!ns,~at~ats those listore'rs 4,I a E ×p,~i:~.€ ~ -t porlmr er t) I

Fa3lsr_, -. •" Is e~porrn:.n rt iiui? -TrL-'--------T-LO dlea 'Es 3 -irnnt~ntan8 •-

I setCurrnnlMoco(VIlV./. MODE)1. [•

p, gcltC 1:=EýJý' ý•• IoadProlcc*'_;sorN~a-esO,}.-• ~t~oimrl[

crcatoNeN sP.Pojoc,.2::cn ac*:DrPerforn' dýe: -- . Ai i >-Tr, . -.- e Is Admin use-? -- 's -" .< i -- ,-also

True CEIro" ,s aeI i L..................................

|o soC' r-ertM• dod CREATE NIODD: I. n. ,

----- 4F! h.. . .. P r..... .. .

[ediPoject3uttc, _acttorPerfcr ,njoe ... , r ý . -.-Trio I,-- d i ..- raIse .. e Ws o,i> -• IA~tivityv? ->.Trj userl

vi........... : ttes: ,jt-c,_: ct: orerfcrmee j

Tru LEu

saveBookButtnr _actionPerfo-npeefe) a s return

D.1 D.2 D.3
Figure 15a. AFGPB DataCap Module e-Lab Book Panel Class Program Flow

25

AFGPB Program Flow - eLabNotebook Panel

D.2-

vritp~r wvrilHrt finalI Y ~ ~ r~rN ~ Fkr Frn

1 rie

D.3 T~.!~- .-- T- me rn = ri~~~ renn~ innipr) Hr~r'lt~sPl11'XtVrHI1!P

E •iPrn r A•. Fi .nn.Wrirr1filr'.,

.1 ~ ~ c. rIn~cn ~ ~ rr~1n re Etry ILI

1ri 10 w -rritl•t / fina r, KW itr.

-- -•.I'
uI'

;•a se

ano -e•lsed -1-i~~i

I~~.,°m

Figure 15b. AFGPB DataCap Module e-Lab Book Panel Class Program Flow Continued

Clicking the View All Entries button activates the viewAllEntriesButton listener method.
This listener calls the setCurrentMode method and passes the VIEWMODE constant.
The listener then calls the getAnnotationEntries method. The getAnnotationEntries
method first calls clearExperimentData, which clears the text area and the Entry ID field.
The method then begins a transaction, runs a query to get all of the entries for the selected
experiment for all users that have made an entry, and finally sorts and formats the entries
and fills the results into the text area. Once the data has been copied into the text area, the
transaction is rolled back to release memory to the system.

26

The saveBookButton listener starts the process to capture all the lab notebook text
currently stored in the database for a given experiment, and format it and save it as a file
in Microsoft Word format. This listener calls the setCurrentMode method and passes the
VIEWMODE constant. As in the viewAllEntries listener, the saveBookButton listener
calls the getAnnotationEntries method, which completes all of the actions as described in
the previous paragraph. Upon return from the getAnnotationEntries method call, a new
instance of JFileChooser is created. JFileChooser creates the familiar File Save dialog
box common in Windows. Once the user enters a file name and clicks the Save button, a
new Java FileWriter instance is created which creates the file at the designated location
and appends the information into it. A check is made to ensure the writer is not null, and
if true, closes the writer and releases the system memory, then returns from the method.
In the event the writer process fails and the writer is null, an error message is returned.

The SaveButton listener is started when the user clicks the Save button. The Save button
is grayed out and not useable unless the user has set the current mode to
CREATEMODE, by clicking the New Entry button. If the current mode is
CREATEMODE, the listener determines if any text has been entered in the Notebook
workspace. If not, the listener executes a rollback action and then returns. If text is
entered, the listener instantiates an instance of Annotation through a createAnnotation
method call. The text from the workspace is captured and added to the Annotation
instance. The listener then checks for a valid entry ID. Entry IDs are created
automatically when the user clicks the New Entry button. If the Entry ID is null, the
listener fires an error message, rollbacks the transaction, and returns. With an entry in the
Entry ID, the listener adds additional information such as the name, the ID number, and
commits the transaction, saving the notebook entry into the Annotation table of the
database.

This concludes the Discussion section on the AFGPB DataCap Phase I module program
flow. This section covered all the relevant information on the inner workings of the
module.

27

4.0 CONCLUSIONS

The Air Force Genomics. Proteomics, and Bioinformatics System(AFGPB) DataCap Phase I
module provides the Applied Biotechnology Branch with a state of the art data collection
module. The Phase I module allows the creation of Activities and Experiments, as well as the
ability to capture the disparate data associated with Experiments from the various paper lab
notebooks in use in the laboratory. The future Phase II effort will provide the capability to
capture data created by the various lab instruments used.

28

5.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

AFGPB Air Force Genomics, Proteomics,
Bioinformatics System

AFRL Air Force Research Laboratory

API Application Programming Interface

BOM The Acero Biological Object Model

CD&E Cellular Dynamics and Engineering

COTS Commercial off the Shelf

DDK The Acero Desktop Development Kit

GHz Gigaherz

GKP The Acero Genomics Knowledge Platform

GKPFS Genomics Knowledge Platform File System

GPB Genomics, Proteomics, Bioinformatics

GRIP Genomics Research Infrastructure Partnership

GUI Graphical User Interface

JBO Java Bean Object

JDO Java Data Objects

MB Megabyte

MOF Metadata Object File

ODLC The Acero Object Data Language Compiler

OID Object ID Number

RAID Redundant Array of Independent Disks

SQL Structured Query Language

UML Uniform Modeling Language

-29

Variable Character Type 2 - An Oracle Data
VARCHAR2 Type

30

